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Full-Wave Spectral-Domain Computation of
Material, Radiation, and Guided Wave
Losses in Infinite Multilayered Printed

Transmission Lines

Nirod K. Das and David M. Pozar, Fellow, IEEE

Abstract —A unified solution for full-wave computation of losses in a
general multilayered planar transmission line is presented. It includes
material losses (dielectric and conductor losses), losses due to radiation
leakage, and losses caused by leakage of power to source-free character-
istic modes (surface wave or waveguide modes, for example) of the
multilayered geometry. A spectral-domain moment method is used with
the Galerkin testing procedure. Significant modification of the conven-
tional spectral-domain analysis of planar transmission lines is neces-
sary in enforcing proper boundary conditions in the Galerkin testing
procedure and, what is more important, in accounting for poles and
branch cuts in the complex Fourier transform domain in order to
rigorously account for the different loss mechanisms discussed above.
Results for a few representative geometries, namely strip and /or mate-
rial loss in a microstrip line and a slotline, surface parallel plate mode
leakage loss in a conductor-backed slotline and a two-layer stripline,
and radiation loss in a single and a coupled stripline at the interface
between two infinite mediums, are presented to demonstrate these vari-
ous loss effects.

I. INTRODUCTION

RINTED transmission lines in multiple layers of di-
electrics and /or ground planes are of interest for multi-
layered architectures of integrated phased arrays [1]-[3].
Considering the potential millimeter-wave applications, not
only the material losses (dielectric and conductor losses) in
the transmission line (which result in significant loss in the
feed network of a phased array), but also losses caused by
possible leakage of power to radiation or to the modal fields
of the layered structure (sometimes unexpected, though in-
evitable), need to be studied. Characterization of such mate-
rial, modal, and radiation losses is also of importance for
integrated optoelectronic applications in studying propaga-
tion of picosecond pulses along a printed transmission line
caused by the large frequency contents of the short pulses
{4], [5]. A full-wave characterization of these integrated loss
effects for an arbitrary multilayered printed transmission line
is warranted.
Spectral-domain analyses have been successfully demon-
strated and widely used for planar transmission lines [6]-[10].
These solutions usually solve for a real propagation constant,
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assuming various conductors and dieleciric media to be
ideally lossless. The losses due to the nonideal dielectrics
and conductors can be separately calculated using a conven-
tional perturbation analysis [10], [11] or other semiempirical
formulas [12], [13] (applicable for single-layered microstrip
line only). However, such perturbation analyses assume a
small loss, which may be generally true in many practical
applications, but one does not know a priori the range of
validity of the small-loss assumption. Also, for plananr trans-
mission lines with multiple layers of dielectrics and ground
planes, where the use of a perturbation analysis requires
adding loss contributions from each individual dielectric or
conducting layer, the calculation becomes increasingly com-
plex from a computational point of view as the number of
layers increases.

Full-wave computation of dielectric and conductor loss
can, however, be implemented in the spectral domain [9],
[14] by replacing the dielectric constants with their respective
complex values, accounting for finite conductivity of infinite
ground planes by enforcing the proper impedance boundary
condition, and solving for the complex propagation constant
—in contrast to a real propagation constant in the lossless
case. This seemingly involves the numerical complexity of
root searching in the two-dimensional complex propagation
constant plane, and also (as reported to date) cannot gener-
ally include the loss caused by finite conducting strips of
finite thickness (of the order of skin depth) in a full-wave
sense (for example, due to the conducting strip of a mi-
crostrip line and the conducting edge of a slotline). In
practice, however, for most cases the loss caused by the
sharp edges of finite conducting strips contributes signifi-
cantly to the total loss. In some integrated circuit applica-
tions, the strip thickness is actually of the order of a skin
depth. Hence, in these cases, the previously reported spec-
tral-domain loss analyses are not very useful.

In addition to the conventional material losses caused by
dissipation of power in imperfect dielectrics and conductors,
losses to dominant modes of infinite-length planar transmis-
sion lines can result from leakage of power to radiation or
characteristic surface modes. These nonconventional losses,
usually undesirable, are sometimes inevitable for high-
frequency applications and for certain multilayered configu-
rations of planar transmission lines. For example, leakage of
power in a conductor-backed slotline to the parallel-plate
waveguide mode has recently been reported in [15], and has
been characterized using a mode matching technique. This
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leakage effect unconditionally occurs for the dominant mode
of the conductor-backed slotline at all frequencies but can be
minimized by increasing the thickness of the parallel-plate
structure. The dominant mode of an infinite-length stripline
structure with two different dielectric substrates on the two
sides of its center conductor can experience an equivalent
leakage to the parallel-plate TEM mode [2]. It has been
found that this can occur if the substrate with the larger
dielectric constant is thicker than the other substrate [16].
Similar loss for the dominant transmission line mode can
conditionally occur for higher frequencies, for example in a
coplanar stripline on a finite-thickness dielectric substrate,
owing to leakage to surface waves on the substrate [4], [5].
Loss in a coplanar stripline at the interface of two semi-
infinite mediums caused by radiation of power to the medium
with higher dielectric constant is described in [17] and ana-
lyzed using a simplified reciprocity method. Leakage loss can
also occur for higher order modes in a single-layered mi-
crostrip [18]-[20], but seems to be very weakly excited for
practical substrate thicknesses by conventional probe launch-
ing in comparison with the dominant microstrip mode. This
problem of leaky higher order modes in a single-layered
microstrip line is of direct theoretical relevance to the pre-
sent work, but owing to their high impedance characteristics
the modes are of less immediate practical relevance in inte-
grated circuit applications.

For a general architecture of a multilayered integrated
phased array [1]-[3], [16] the characteristic source-free sur-
face modes can exist in a variety of forms, such as a surface
wave mode, a parallel-plate waveguide mode, or other forms
of trapped surface modes of the multilayered geometry [16].
Loss in a multilayered transmission feed network arising
from possible leakage to any of these modes should be
carefully predicted and probably quantified to help suppress
or avoid a potential disaster in the practical design.

This paper presents a unified spectral-domain moment
analysis of various possible loss mechanisms in a gencral
multilayered printed transmission line. The analysis is full
wave in all respects and establishes a general analytical
framework to account for one or more of the possible loss
mechanisms discussed earlier in the spectral domain. The
various steps of a conventional spectral-domain analysis need
to be revisited and suitably modified to rigorously account
for these effects. It is seen that the fields of an infinite
transmission line with surface leakage or radiation leakage
exponentially grow in the transverse or the normal direction,
respectively. (This phenomenon, however, never occurs for
real finite-length transmission lines, and should not be mis-
understood to violate the radiation condition for finite struc-
tures.) Section II describes the analysis, with specific results
presented in Section III for a) strip and material loss in a
microstrip and a slotline, b) parallel-plate leakage loss in a
conductor-backed slotline and a two-layer stripline, and c¢)
radiation leakage loss in a single microstrip line or an odd-
mode coplanar stripline at the interface of a semi-infinite
dielectric. Various critical points are discussed from analyti-
cal and qualitative viewpoints.

1I. ANALYSIS

In performing a spectral-domain moment method solution
for a printed transmission line geometry, one needs to ex-
pand the unknown electric currents or equivalent magnetic
currents (electric field) of the system with an N-dimensional
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basis set and enforce suitable boundary conditions via a
variational Galerkin testing procedure [7], [8]. The testing
procedure establishes a set of linear equations:
N
ZIIIZIj(kc)=0’ j:LN- (1)
=
As a result, it is required to solve for the root, k,, of a
determinant:

Det|Z,(k,)] 0 (2)

where Z,, is the reaction of suitable field component(s) due
to the ith expansion function on the jth testing function.
The testing functions are chosen to be the same as the
expansion functions for a Galerkin testing method. In the
spectral domain the Z, ’s are obtained by evaluating Fourier
integrals that involve transforms of the basis functions cho-
sen and the spectral-domain Green’s functions to account for
the field components for proper boundary condition testing.
Thus, the entire procedure involves four basic steps: 1)
obtaining the Green’s function, 2) formulating the testing
procedure, 3) evaluating the necessary spectral integrations,
and 4) performing the root searching. These four steps used
in a conventional moment method analysis need to be criti-
cally viewed to account for all possible loss mechanisms. As
will be discussed, choosing the proper Green’s functions in
step 1 can account for any losses due to infinite (in lateral
extent) conductors or substrates; using a suitable testing
procedure in step 2 can account for losses caused by finite-
width and finite-thickness conducting strips or by slot edges:
and properly deforming the contour of spectral integration
of step 3 in the complex spectral plane can rigorously ac-
count for possible radiation or characteristic mode leakage
effects. Deformation of the integration contour to circum-
vent the characteristic wave poles incorporates the leakage
loss due to excitation of these modes, whereas deformation
of the integration contour with proper selection of the branch
plane and branch cut can incorporate any radiation loss.
Finally, the complex root searching procedure, which is gen-
erally computationally intensive, can be greatly simplified for
small losses through the use of a simple method called the
spectral-domain perturbation technique. This technique uses
the simplicity of real root finding (as in a lossless case) but
has the added power of incorporating all integrated loss
effects without additional computation.

NXN—

A. The Green’s Function

As discussed, the Green’s functions are necessary to ac-
count for different field components in the testing procedure
to evaluate the spectral integrals for Z,;. Through these
Green’s functions, the effect of the layered medium is rigor-
ously incorporated into the solution. Thus, any material loss
in the dielectric substrates or infinite (in lateral extent) lossy
ground planes can be accounted for by using Green’s func-
tions with complex dielectric constants and finite ground
plane conductivity. Such Green’s functions can be easily
derived using the iterative method presented in [21], with
details for its most general dyadic form with all possible
source and field components in [16]. Unlike the Green’s
functions with perfect conducting planes that satisfy zero
tangential field boundary conditions on the perfectly con-
ducting ground planes, impedance tangential boundary con-
ditions are enforced for imperfect conductors of infinite
thickness (or significantly thicker than the skin depth). Finite
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Fig. 1. Thin-strip equivalent problem for a conducting strip showing
the equivalence between the tangential electric field boundary condi-
tions. (a) Original problem. (b) Thin-strip equivalent problem.

field leakage through finite-thickness conductors can be ac-
counted for by treating the conductor as another dielectric
layer with a complex dielectric constant. Complex magnetic
permeabilities are as easily incorporated to account for any
magnetic losses, if desired. Certain types of anisotropic losses
(uniaxial) in dielectric substrates can also be incorporated
into the Green’s functions of [16] via complex dielectric or
magnetic tensors, as long as the TE and TM waves are not
coupled to each other in the substrate layers.

B. Boundary Conditions for Galerkin Testing

The boundary conditions used for conventional solutions
use vanishing electric fields on the strip conductors for
microstrip-type geometries. For slot geometries, where an
aperture electric field formulation is used, continuity of the
tangential magnetic field across the slot (or, equivalently,
zero electric current on the slot region) is the boundary
condition usually required [9]. The magnetic fields are com-
puted without accounting for the finite conductivity of the
conductors present in the plane of the slot.

Such boundary conditions for strip-type or slot-type trans-
mission lines, as expected, cannot account for the significant
conductor loss in the vicinity of the finite strip guiding
structure. A modified set of boundary conditions is given
below which can, however, potentially account for these
losses via Galerkin testing. A similar method has been very
recently reported in [22] for strip conductors only.

Let the surface currents on the top and bottom surfaces of
a lossy conducting strip be, respectively, J(y)e_”” and
J »(»)e ke . Assuming the strip to be thin, the surface cur-
rents on the top and bottom can be equivalently replaced by
a single strip of surface current J( ye Kx = (J(y)+
J(y)e ke (see Fig. 1). In order for J, and J, or, equiva-
lently, J be the eigencurrents of the system, the total tangen-
tial electric field on the two surfaces of the conductor should
be related to the corresponding magnetic fields by the

impedance boundary conditions:

=Z,(A X H)) Ey=Z,(i, X Hy)  (3)
where Z,, and Z, are the complex surface impedances of
the top and bottom surfaces (this would account for different
surface metallizations on the two sides). Now, with the
equivalent eigencurrents, J=J,+J,, at the center of the

strip, the above impedance boundary conditions can be
equivalently enforced at the center of the strip as

E=(E, E,;) (4a)
where the right-hand side is the weighted average of the

tangential electric fields, E ; and Ez. Such a weighted averag-
ing can be equivalently implemented in spectral domain as

z z = |E,|E,, +1E,|E
E:(EI,E2)=)? 1x ~lx ~2,\' 2x
LE ) 1+ B,
AIE~1y|E-])'+IE~2,\'IE2y
B+ 1]

(4b)

Using (3) this equivalent impedance boundary condition can
be variationally implemented by a Galerkin’s test procedure
(eq. (1)):

N — — _ _
v If[E - £x(z,H,, - Zszﬁz)] J* dk,

1=1

N
=2 12,=0 (5)

1=1

where the tilde ( ~ ) represent the Fourier transform quanti-
ties with respect to y, J, is the transform of the jth basis
function, and the subscript i corresponds to fields due to the
ith basis function, with unknown amplitude I,.

For the above derivations it is assumed that the strip
thickness is larger than several skin depths; thus the surface
clectric fields are dependent only on the magnetic field at
that surface by the surface impedance. This would not be
true if the strip thickness were of the order of a skin depth,
where the tangential electric and magnetic fields on the two
surfaces are coupled to each other via an impedance matrix.
Using plane wave transmission characteristics through a thin
conducting layer (in terms of an impedance matrix [Z]),

le = ZZZ -]Z cot .Bm Z - ZZ] —JZ cosec Bm
(6)
E =:x(Z,H +Z,H,) Ey=—$x(ZyH,+ Z,H,)
(7

where B,, is the complex propagation constant, Z; is the
complex surface impedance, and ¢ is the thickness of the
metal strip. Equation (7) gives the new set of impedance
boundary conditions on the two surfaces of the conductor,
for which a weighted average similar to (4) can be obtained
to give the equivalent electric field boundary condition for
the thin-strip approximation.

The equivalent problem for the electric field in a slot on a
lossy ground plane is shown in Fig. 2. With the assumption
that the tangential magnetic fields in the slot region of the
original problem are zero, the equivalent problem for the
slot reglon can be represented only with magnetic currents,
M=EX 3. Using the general principle of equivalent surface
current modeling, we can place the lossy conducting plane
between the equivalent magnetic current sheets (because the
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field inside the closed equivalent surface is zero). Thus, the
lossy conductor is continued under the magnetic current
sheet, which can be easily handled analytically.

Using the multilayer Green’s functions of [21], with the
details for this particular type of geometry (with magnetic
current) in [16], we can find the expressions for H; and H,.
The finite conductivity of the conducting plane, and its finite
thickness, can be treated via the general multilayer Green’s
function by regarding the conducting plane as a thin layer
with a complex dielectric constant, € = ¢, — jo /w. It should
be noted that H; and H, should be computed, in general, as
arising from the two magnetic currents on the two sides of
the lossy conductor to account for field penetration through
the conductor. Simplifications can, however, be made if the
metal layer is thicker than several skin depths when the
fields on the two sides of the conductor are isolated from
each other and thus depend only on the magnetic current
source on ecach side. In this case the required Green’s
function is due to a magnetic current on a lossy ground plane
of semi-infinite extent in the normal direction and of infinite
extent in the lateral direction. _

In order for M or, equivalently, E to be the eigenfields of
the transmission line, continuity of H, and H, should be
enforced across the slot:

H, — H,=0. (8)
This magnetic field continuity condition can be imple-
mented by Galerkin’s testing as (eq. (1)):

N
51
;=1 °Jjthmode
where E] is the jth slot electric field basis function, and the
subscript i corresponds to tangential fields arising from the
ith basis function with amplitude I;. Spectral-domain imple-
mentation of (9) is straightforward using the Green’s func-

tions discussed. For the most general case with finite thick-
ness and finite conductivity,

[(EH,M - EII-I,M) 'AT’I,' + (EHZM - gth) AT’II]

-(E,* X 2)dk, (10)

N
(H,-Hy,)-(E¥*x £)dy= ¥ 1,Z,=0 (9)

i=1

Z,=
Jjth mode

where the primed Green’s functions are for the respective
magnetic fields caused by the magnetic source below the
conductor, and the unprimed Green’s functions are from the
magnetic source above the conductor. It should be clear that
when the metal is thick, because there is no coupling of the
field from one side of the metal to the other, )
G =Gl =0.

(11)

C. Integration Contour for Spectral Integrals

1) The Pole Consideration: Usually, the spectral integrals
for Z,, are evaluated along the real axis of the complex
spectral plane. In this case Fourier transforms of various
field components exist along the real spectral axis, and no
possible branch cuts are crossed by the contour of integra-
tion. But when any source-free characteristic mode of the
layered structure is excited, the fields of the leaky infinite-
length transmission line exponentially increase in transverse
directions. As shown in [15], this leakage effect occurs for
cases where the guide propagation constant, B, is less than
that of the characteristic mode, k.. For example, in a con-
ductor-backed slotline (see Fig. 3) the effective dielectric
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Fig. 2. Equivalent problem for a slotline on a lossy ground plane. (a)
Original problem. (b) Equivalent problem.
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Fig. 3. Conductor-backed slothne that leaps power to parallel-plate

mode.

constant, €., of the slotline is between €, and 1, where
k.= k(,\/e, > (B = ko\/ee,,) > ky. The characteristic
parallel-plate propagation constant, k, = k(,\/;. is uncondi-
tionally greater than B, which results in an unconditional
leakage effect. independent of frequency or parallel-plate
thickness. The attenuation constant due to leakage, «, is
controlled by the parallel-plate thickness and the slot width,
which results in a complex guide propagation constant, k, =
B—ia.

Now, using the conductor-backed slotline as an example,
the propagation of the excited characteristic wave in the y
direction, given by e ~*=»¥, should be such that

¢

ky,,=¢k3—k3=¢k3~[32+a3+2j3a. (12)

It can be easily checked that k,, may lie in the first quad-
rant (or third quadrant, due to its double value) of the
complex plane, which corresponds to a propagation and
exponential growth in the outward direction. This exponen-
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Fig. 4. Transverse variation (even type) of fields of an infinite leaky
transmission line.

tial growth in the transverse direction can be qualitatively
explained as follows.

As shown in Fig. 3, the points a and b receive the
characteristic waves originating respectively from the points
a' and b’ along the slot, where 6 = cos ' (k, / k,) [15] (this is
strictly not true for a complex lossy k,, but provides a fairly
good qualitative picture for small loss). When the slotline is
lossy because of the leakage effect, the electric field on the
slotline has an exponential decay along the propagation
direction, resulting in a larger value at b’ than at a’. Hence
the field magnitude at b tends to be larger than that at a,
which explains an increasing trend of the electric field in the
transverse direction. In fact, it is true in general that, for a
multilayered structure, a guided mode with propagation con-
stant smaller than that of a characteristic mode of the
structure always leaks power and results in exponentially
growing fields in the transverse direction. Clearly, for such
an exponentially growing field component, the Fourier trans-
form in the y direction does not exist for real values of
spectral arguments, k.

In order to handle this problem in the spectral domain. we
decompose any field or potential of the transmission line,
f(y), into three parts (see Fig. 4):

FY =+ +4) (13)
such that f* extracts the part of f that exponentially grows

for y -, and f~ extracts the part of f that grows for
y — —oo. For example, we can choose

FH(y)=Ce*wre~kuwry( y)= eifl‘""yu(y) (14)

I (9) = £ CeMure (1= u(y)) = e b (1= (1)
(15)

with + C for odd or even symmetry of the respective field,
ky,>0, k,,,>0, and u(y)=1 for y >0 and zero for y <0.

Now with this decomposition, f2(y) does not grow in the
transverse directions; thus its Fourier transform exists on the
real spectral axis. The Fourier transforms of f*(y) and

iy )
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Fig. 5. Integration contours on complex k. plane for a transmission

line with leakage to characteristic surface wave.

f1(y)in (14) and (15) can be expressed as

+ - I ¢
F (k)) j(ky+ky1))‘ Im(k))< kyp (16)
F (k) et Im(k)> -k (17)
)= ) m(k,)>—ki,.
=T ) U

It should be noted that the transforms, F* and F~, in (16)
and (17) contain poles at — k,, and k, respectively. In fact,
instead of the f™ and f~ expressions of (14) and (15). if any
other f* and f~ expressions were chosen to extract the
exponential growing behavior, the corresponding F* and
F~ spectral expressions would contain poles of first order at
—k,, and £k, respectively. Thus, because the spectral-
domain poles of the total field expression, F(k‘,), at these
locations are also of first order [14], they are completely
extracted into F* and F~. The remaining spectral content,
F4, is therefore analytic everywhere in the complex k.
plane. (This assumes, however, that only one characteristic
mode exists, but the argument can be extended for addi-
tional characteristic modes.)

Owing to the nature of the individual components, F*t, F~
and F®, the respective inverse integral contours are re-
stricted. Because F* is analytic everywhere in the complex
k, plane, the spectral integration contour can be along any
path from ~o+ j0 to +o+ j0. On the other hand, the
required contours for F* and F~, as required by the condi-
tions of (16) and (17), need to be along any horizontal line
below and above the lines, /, and /,, respectively (see Fig. 5).
By suitable analytic deformation, the contours for F* and
F~ can, however, be chosen to be any curved line traversing
below and above the poles at — kv/v and k,, respectively.
The contour, C, that satisfies the existence and validity of
transforms of all three components of F should be such that
it contains — k,, and k, respectively above and below it
(see Fig. 5). By further deforming C in Fig. 5, we obtain a
simple contour C’ that covers the entire real axis and en-
closes —k,, and k,, in the residue sense.

In the moment method formulation, when the Z s are
computed as reactions of different ficld quantities on the test
functions, the spectral integrals contain the Green’s func-
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tions for the field components (the field transform of a line
source) and transforms of the finite domain basis functions.
Since the transforms of finite domain functions are always
analytic over the entire complex spectral plane, the integra-
tion contours of these spectral integrals are determined by
the analyticity and pole locations of the Green’s function
alone. The spectral integrals need to be evaluated along C’
(see Fig. 5) and can be simplified to

[~ (e, +2mj[Res () -k, ~Res (), ] (18)

It should be noted, that a leaky infinite-length transmission
line with growing fields in the transverse direction does not
fundamentally violate the radiation condition. The radiation
condition in electromagnetic theory is based on the assump-
tion of finiteness of radiated power in the far field owing to a
source of finite power. This is not the case for an ideal
infinite-length leaky line, because the source power itself
(with e~ ** variation along the line) is infinite at x = — 0.

However, it may seem unreasonable that in practice a
leaky transmission line has growing fields in its transverse
direction. A practical transmission line, in fact, does not have
growing electric fields in its transverse direction, owing to its
finite length and finite substrate size, in contrast to an ideal
infinite-length line on a substrate of infinite size assumed in
our analysis. Nevertheless, such a practical finite-length leaky
transmission line would definitely have larger spreading of its
fields, as opposed to the tightly bound guided fields of other
nonleaky structures, The widely spreading unbound fields
get scattered off the edges of the substrates of finite size.
And thus, because of the interference of the scattered fields,
the characteristics of the leaky practical transmission lines on
substrates of finite size would be more likely to deviate from
the characteristics obtained from the ideal infinite-structure
analysis. This is in contrast to cases of nonleaky geometries
that do not practically see the far-off edges of finite-size
substrates. The propagation characteristics of an infinite-
length ideal leaky transmission line still provide useful infor-
mation for these finite-length transmission lines.

2) Branch Cut and Branch Plane Consideration: 1t should
be noted that in the preceding discussion of complex spectral
plane integration it was assumed that any analytic deforma-
tion of the integration contour should lie on the same branch
plane. Multiple branch planes occur in the complex plane of
spectral-domain Green’s functions for a layered geometry if
the top or the bottom layer of the multilayer structure is
infinite in the normal direction [16], into which power can
radiate. Mathematically, these spectral-domain branch cuts
are due to multivalued square root expressions for outward
propagation in the infinite mediums. The value of the out-
ward propagation constant is chosen [23] such that it corre-
sponds to a decaying wave, which is consistent with the
radiation condition. It may be mentioned that similar multi-
valued square root expressions occur in the spectral Green’s
functions for propagation in other finite-thickness layers of a
multilayered geometry, but these can be shown not to corre-
spond to any valid branch cut, and are removable in the final
Green’s function expression [16].

These branch cuts are, however, of particular importance
when one considers the case of an infinite planar transmis-
sion line leaking power to radiation. Like the condition for
leakage to a surface mode for a planar transmission line on a
general multilayered medium, radiation leakage occurs when
the real propagation constant of the transmission line mode
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Fig. 6. Radiation leakage in a coplanar stripline at the interface be-
tween two semi-infinite mediums.

is less than that of an infinitely extending layer on top or
bottom. For example, the dominant mode of a coplanar
stripline on the interface of two semi-infinite layers, air and
a semi-infinite dielectric layer (see Fig. 6), has a propagation
constant between those of the two mediums, which is less
than the propagation constant of the dielectric medium. So,
as discussed, the coplanar stripline is lossy owing to leakage
to radiation into the dielectric medium. In contrast to the
leakage caused by characteristic mode excitation, where the
power leaks in only one direction, corresponding to only one
characteristic mode propagation constant, the radiation leak-
age occurs over a spectrum of wavenumbers from zero
to kgye,, which corresponds to conical radiations from
the transmission line' given by the cone angle, 6 =
cos”'(k, /kg/e,) (see Fig. 6) [17]. (This again is not rigor-
ously true for complex lossy k, but provides a fairly good
qualitative picture for low-loss cases.)

Also, with similar arguments to explain the exponential
growth of the electric field in transverse directions for the
characteristic wave leakage case, one can explain in this case
a nondecaying field in the normal direction (see Fig. 6). This
seems to violate the radiation condition of electromagnetics
discussed earlier; hence interpretation of a proper choice of
branch cut and branch plane for outward propagation is
important. However, like the characteristic wave leakage
case, the fundamental principle of finiteness of radiated
power at far field owing to a source of finite power is not
violated because the input power at x — —o (for ¢~
variation) is infinite. All other arguments for the practicality
and significance of the growing electric field with distance
caused by an e~ variation along a transmission line with
the characteristic wave leakage also apply here for the radia-
tion leakage.

This condition of growing electric fields in normal direc-
tions is incorporated into the solution by a proper choice of
branch cuts and branch planes. For such a structure (Re(k )
< k(,\/E,‘) the branch points in the complex k, plane are
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Integration contour and branch cuts in the complex &, plane
for a lossy transmission line with radiation leakage.

Fig. 7.

shown in Fig. 7 as a and «', given by k, =v/kge, — k7, for k,
without loss (but €, with slight loss, which is realistic). In this
lossless case the choice of branch cuts is arbitrary as long as
the real k, axis of integration satisfies the radiation condi-
tion (for lossless k,) and does not cross the branch cut. The
vertical lines in Fig. 7 originating at ¢ and &' and continuing
up and down, respectively, form a pair of such branch cuts.
For analysis of finite structures (antennas), alternative branch
cuts, B, and B, are chosen [23] such thai the entire branch
plane satisfies the radiation condition. But these branch cuts
are not suitable for extending the analysis for lossy k, cases,
where this radiation condition is no longer valid. When %,
becomes leaky the branch point can be seen to move from
the fourth to the first quadrant, and from the second to the
third quadrant with the branch cuts, B and B’, now cuiting
across the real & v axis. In order to maintain analytic continu-
ity of the physical situation of gradual transition from the
lossless to the lossy case, the contour of integration needs to
be deformed around the branch cut on the same branch
plane (contour C of Fig. 7). An exact physical interpretation
of this deformation seems to be difficult at this point but is
consistent with the fact that the contour of integration partly
covers a region that does not satisfy the radiation condition
(the shaded portion of the presently chosen branch plane
corresponding to the branch point pair, (b,5'), does not
satisfy the radiation condition), which accounts for the non-
decaying fields in the normal direction. It should also be
noted that if the branch cuts B, and B, had been chosen,
which eventually move to B, and B respectively for lossy
k., the real k, axis of integration (which now does not cross
the branch cuts) would jump from one side of the branch
cuts to the other, representing a discontinuous nonphysical
condition that is invalid and nonanalytic.

D. Root Searching in the Complex Plane

The root searching for (2) in the complex k, plane is
computationally complex and time consuming. Also, the
spectral integral for computation of Z, , has to be evaluated
for complex values of the spectral parameter k,, which is
often difficult. However, for most practical cases of small
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Fig. 8. Comparison of ground plane and dielectric losses of a mi-

crostrip line computed by present method and by the perturbation
method. Substrate: ¢, =22, 0.16 cm, line width=0.5 c¢m, freq =3.0

GHz, no loss effective propagation constant =0.866 cm~'. Ground

plane conductivity = ¢, substrate loss tangent = tan é.

loss, the problem can be simplified to root searching along
the real k, axis only. If there is no loss, Det[k,] of (2) is
equal to zero for a real value of k,= 8. With the addition of
small loss, Det[B]=u, where u is a small complex number in
general. Then we compute the determinant in the neighbor-
hood of B, 1.e., k,= B+ AB, and let Det(B + AB) = r, where
v is also complex in general. With these two values of the
determinant for two closely spaced points on the real axis,
we can obtain the complex solution for Det[k,= B8 — ja] by
analytic extrapolation, where o =(— juAB)/(v —u). This
method is referred to as the spectral-domain perturbation
method, where a perturbation of the spectral integrals is
implemented, in contrast to the commonly used space-
domain perturbation method, where the spatial field distri-
butions are perturbed by the loss caused by the finite con-
ductivity of a real conductor or nonzero loss tangents of real
dielectrics. Both perturbation methods are valid only for
small losses. But the spectral perturbation method obtains
the loss together with the real propagation constant without
additional computation. It is computationally simple and
straightforward and, as discussed, is particularly important
for multilayered geometries to avoid separately computing
the perturbation loss contribution from all the loss elements,
which is analytically involved as well as computationally
complex and sometimes impractical.

III. REsuLTs AND DiscuUssioNs

A. Dielectric and Ground Plane Loss in a Microstrip

Fig. 8 compares the propagation and attenuation constants
of a microstrip line with a lossy ground plane and lossy
dielectric substrates as obtained from the present analysis
and a perturbation analysis [11]. The results were obtained
by incorporating ground plane and dielectric losses into the
Green'’s functions and solving for the complex propagation
constant. Strip loss was not included. As the results show,
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Fig. 9. Comparison of total conductor loss of a microstrip line includ-
ing the center strip obtained using the present method and that of [13].

the perturbation analysis provides quite accurate results for
fairly large values of loss tangents or ground plane resistivity.
The loss tangent can be as high as approximately 0.1 for the
perturbation analysis to be valid. It is, however, more critical
for ground plane conductivity. For this particular parameter
set the perturbation analysis starts to show deviation from
the full-wave results for conductivity values as low as one
hundredth of the conductivity of copper. This limit is still
worse for larger frequencies (varies as square root of fre-
quency) and also if the strip loss is included.

B. Strip Loss of Microstrip Line and Ground Plane
Discontinuity Loss of Slotline

Using the proper boundary conditions discussed in the last
section, losses in a microstrip line caused by the strip con-
ductor, and in a slotline caused by the ground plane’s slot
edge discontinuity, are calculated. In the microstrip line
case, conductor loss arising from the infinite ground plane is
also added via the Green’s functions with an impedance
boundary. The results are presented in Figs. 9 and 10,
respectively. Results for the microstrip line are compared
with those of the widely used static analysis of [13]. The
agreement is fairly close except for small strip widths. For
the slotline, the results are compared with those of a sepa-
rately formulated perturbation analysis (Fig. 10). The agree-
ment is equally good, but it experiences a much weaker
convergence with respect to the number of expansion func-
tions used compared with that for a microstrip line strip loss
analysis.

C. Parallel-Plate Mode Leakage in a Conductor-Backed
Slotline

The results of the propagation and attenuation constants
of a conductor-backed slotline are compared in Fig. 11 with
the theory and experiment of [15). This incorporates proper
deformation of the spectral integration contour to include
the pole caused by the parallel-plate mode. The agreement
between the different results of Fig. 11 is generally good, and
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freq = 10 GHz.

there is qualitative agreement with the experimental results
except for low and high values of d /A,. For large values of
d /Ay, the number of basis functions for expansion of the
transverse variation of the slot field required for the present
analysis is extremely large, which could explain the deviation
of the results from the theory of [15] owing to insufficient

.convergence. The deviation of the results for smaller d /A,

however, is not clear.

As shown in Fig. 11 the leakage loss in a conductor-backed
slotline can be reduced by increasing the slot width or by
increasing the parallel-plate thickness. It can also be avoided
by loading the slotline with a substrate of sufficiently high
dielectric constant on the top. This would result in increasing
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Stripline Geometry with Two Dielectrics
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Fig 12. Effective dielectric constants, €., of the characteristic two-
layer parallel-plate mode compared with that of the two-layer stripline
mode, as a function of the dielectric constant of one layer, €,,, to
demonstrate the new leakage effect. Frequency = 3.0 GHz, strip width
=0.12 cm.

the dominant mode propagation constant above that of the
parallel-plate mode and, as discussed before, would elimi-
nate the excitation of the characteristic mode.

D. A Potential Leakage Effect in a Stripline with
Two Dielectrics

A leakage effect similar to that in a conductor-backed
slotline described above occurs for the dominant mode of a
stripline geometry with two different dielectrics. As shown in
Fig. 12, for the case where the two substrates are of the same
thickness, the stripline mode has a propagation constant,
ko‘/e—ef'f (curve 1), always greater than or equal to the corre-
sponding characteristic parallel-plate mode (curve 3). On the
other hand, when the two substrates are of different thick-
nesses and the thicker substrate has a larger dielectric con-
stant (curve 2, crossed region), the stripline propagation
constant is less than that of the characteristic parallel-plate
mode (curve 4). For this case, the electric field of the
stripline is concentrated on the thin substrate (with smaller
dielectric constant), which makes its effective dielectric con-
stant closer to that of the thin substrate. The effective
dielectric constant of the parallel-plate mode, however, is
dominated by the thicker substrate, and so it tends to be
larger than that of the stripline mode. This condition, as
described before, excites the parallel-plate mode, resulting in
a leaky stripline.

E. Radiation Leakage in a Microstrip Line or a Coplanar
Stripline on a Semi-Infinite Dielectric

The propagation and attenuation constants of a microstrip
line and a coplanar stripline on a semi-infinite diclectric
medium are presented in Fig. 13. As discussed previously,
the power leaks to radiation into the dielectric medium, and
this effect is incorporated into the solution by proper selec-

Radiation Leakage
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Fig. 13. Propagation (8) and attenuation (a) constants of a coplanar

stripline and a microstrip line at the interface between a semi-infinite
dielectric medium and air. Coplanar stripline: width = 0.5 cm, center-
to-center hine separation = 0.6 cm; microstrip line: width = 0.5 cm; fre-
quency = 3.0 GHz.

tion of the branch cut and deformation of the spectral
integration contour. Clearly, the leakage increases for larger
dielectric constants, with no leakage when the dielectric
constant is unity, as expected. The leakage in a coplanar
stripline is comparatively less than that in a microstrip be-
cause of cancellation of radiation caused by the oppositely
directed currents on the two odd-mode strips of the coplanar
stripline structure.

IV. CoNncLUSIONS

Several geometries have been analyzed for material and
leakage losses using the general multilayer loss analysis de-
scribed in this paper. Results are compared with other
results from the literature, where available. This paper pro-
vides, for the first time, a full-wave spectral analysis of the
parallel-plate leakage loss in a conductor-backed slotline and
of the radiation losses in striplines at the interface of two
semi-infinite mediums. Furthermore, it identifies a potential
leakage loss in a two-layer stripline. The general analysis will
find potential use for the prediction or full-wave quantifica-
tion of leakage and material losses in other layered geome-
tries for multilayered integrated circuit applications.
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